

Meccanismi di immunoescape nei linfomi trattati con bispecifici

Carmelo Carlo-Stella, MD

Department of Biomedical Sciences, Humanitas University, Rozzano, Italy

Humanitas Clinical and Research Center, Rozzano, Italy

SIES - 9° WORKSHOP IN EMATOLOGIA TRASLAZIONALE – Bologna, 19-20 Maggio 2025

Disclosures of C. Carlo-Stella

Company name	Research support	Consultant	Stockholder	Advisory board	Other
ADC Therapeutics	x	Х		х	Honorarium
Celgene/BMS				x	Honorarium
Incyte					Honorarium
Hoffmann-La Roche Ltd	х			х	Honorarium
Janssen Oncology					Honorarium
Takeda					Honorarium
Merck Sharp & Dohme				х	Honorarium
AstraZeneca					Honorarium
Gilead					Honorarium
SOBI				х	Honorarium
AbbVie				x	
Genmab				х	

Structural Features of the CD20xCD3 Bispecific Antibodies

T-cell, binding, activation, expansion, T-cell mediated target cell death at low receptor occupancy

•Monovalent binding (1:1 format)

[epcoritamab, mosunetuzumab, odronextmab] reduces avidity and results in lower antitumour activity in preclinical models

•Bivalent binding (2:1 format)

[glofitamab] increases avidity binding and results in higher antitumour activity in preclinical models

Long half-life and reduced toxicity

Fc modifications and silencing

CD3 on T-cells

٠

٠

Full length antibody

Immune Synapse

- Simultaneous binding to CD20 on tumor cells and CD3ε chain of the TCR on T cells results in the formation of an immune synapse
- T cell activation and release of perforins and granzymes result in **T cell-dependent killing of the tumor cell**.
- Both CD4+ and CD8+ T-cell subsets can eliminate tumor cells, but the onset of CD4+ T cell-mediated killing is delayed compared with CD8+ T cell-mediated killing
- T cell-mediated tumor cell killing without the need for antigen recognition by MHC class I or II molecules, antigen-presenting cells, or costimulatory molecules

T-cell Bispecific Antibodies (TCBs) Highly potent molecules leading to T-cell-mediated killing of tumor cells

• T cell expansion

Example of tumor cell killing by CD20-TCB

Tumor cell blue; CD8+ T cells green; TCB white

Response rates at RP2D – Pivotal data in 3L+ DLBCL

Characteristics	Glofitamab (n=155)*	Epcoritamab (n=157)**	Odronextamab*** (n=141)
CRR	<mark>61 (39.5%)</mark> [95% CI: 31.6% <i>,</i> 47.5%]	<mark>61 (39%)</mark> [95% CI: 31–47]	<mark>39 (31%)</mark>
ORR	80 (51.6) [95% CI: 43.5%, 59.7%]	99 (63) [95% CI: 55–71]	66 (52%)

*Dickinson M, NEJM 387:2220-2231, 2022; **Thieblemont C, JCO, 41:2238-2247, 2023; ***Ayyappan S, Blood 142: 436-38, 2023

Glofitamab CR Remained Durable

	All patients (N=155)*	R/R DLBCL/ trFL (N=132) ^{1†‡}	Prior CAR-T (N=52) [†]
ORR, n (%) [95% Cl]	80 (52)	74 (56)	26 (50)
	[43.5–59.7]	[47.2–64.7]	[35.8–64.2]
CR rate, n (%) [95% CI]	<mark>62 (40)</mark>	58 (44)	19 (37)
	[32.2–48.2]	[35.3–52.8]	[23.6–51.0]
Median DoCR, months (95% CI)	<mark>26.9</mark>	28.3	22.0
	(19.8–NR)	(19.8–NR)	(6.7–NR)
24-month DoCR , %	<mark>55.0</mark>	56.2	<mark>33.1</mark>
(95% CI)	(41.1–68.8)	(41.9–70.4)	(7.2–59.0)
Median CR follow-up,	29.6	29.6	23.0
months (range)	(0–39)	(0–39)	(0–33)
Ongoing CRs, n/N (%)	34/62 (55)	32/58 (55)	10/19 (53)

Median time on study: 32.1 months (range: 0–43)

With 32 months median follow-up, glofitamab showed high response rates and durable remissions across subgroups

*Intent-to-treat population (DLBCL, trFL, HGBCL, and PMBCL); [†]Patients in this subgroup had similar baseline characteristics to the overall population; [‡]Primary efficacy population reported in the glofitamab USPI, all patients received at least one dose of glofitamab. CI, confidence interval; NE, not estimable; NR, not reached; USPI, United States prescribing information.

1. COLUMVI USPI. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761309s000lbl.pdf

Epocoritamab CR Remained Durable

Kaplan-Meier estimates are shown. *Based on COVID-19-adjusted sensitivity analyses, which censored deaths due to COVID-19.

PFS

Kaplan-Meier estimates are shown. Based on COVID-19-adjusted sensitivity analyses, which censored deaths due to COVID-19.

T-cell redirecting therapy – Mechanisms of resistance

Lymphoma-related features

- Antigen downregulation or loss of expression of the target antigen (mutations)
- Selection of a pre-existing clone lacking target expression
- Heterogeneous antigen expression: Some tumor subclones may naturally express less of the target antigen, leading to immune escape
- Epitope masking or mutation: Structural changes in the antigen can prevent antibody binding.
- Genetic lesions in tumour cells associated with a lower response rate

CD20 status before glofitamab and at relapse/progression Paired Biopsies

ANTIGEN ESCAPE,

predominantly related to acquired mutations in MS4A1 is a major cause lymphoma progression after treatment with the CD20xCD3 bispecific antibody mosunetuzumab

T-Cell Characteristics

- Cumulative exposure to immunosuppressive anticancer drugs contributes to impaired T-cell fitness
- Chronic exposure to T-cell redirecting antibodies, may induce T cell exhaustion (proliferation, killing capacity, and cytokine secretion
- T cell exhaustion: inhibitory interactions with the tumour cells (eg, PD-L1)
- Insufficient T cell infiltration may prevent activation of a strong response

Immunosuppressive Microenvironment

- High levels of immunosuppressive cells (regulatory T cells, TAM, MDSC) and immunosuppressive molecules (TGF-β, IL-10) can inhibit T cell activity
- Bone marrow stromal cells also impair the activity of BsAbs against tumour cells by suppressing T-cell activation

Background

- Englumafusp alfa (CD19x4-1BBL costimulatory bispecific antibody-like fusion protein)¹
 - targets B cells (CD19) and immune cells expressing 4-1BB
 - elicits strong costimulatory signal (signal 2) that augments and prolongs
 T-cell activity, and has the potential to increase anti-tumour activity
- Glofitamab (CD20xCD3 T-cell-engaging bispecific antibody)²
 - targets malignant B cells (CD20) and activated T cells (CD3) (signal 1)
 - significant single-agent activity in R/R NHL³⁻⁵
- Ongoing Phase I study (BP41072*) is evaluating englumating alfa in combination with glofitamab in R/R B-cell NHL (B-NHL)⁶

Englumafusp alfa mechanism of action¹

Aim: Present updated efficacy data for patients with R/R aggressive B-NHL (aNHL; n=83) and safety data for all patients with R/R B-NHL (N=134) in the dose-escalation part of the Phase I study

1. Claus et al. Sci Transl Med 2019;11:eaav5989; 2. Bacac et al. Clin Cancer Res 2018;24:4785–97 3. Morschhauser et al. ASH 2021; 4. Dickinson et al. N Engl J Med 2022;387:2220–31 5. Phillips et al. ASCO 2024; 6. Dickinson et al. ICML 2023

Englumafusp alfa plus glofitamab shows promising activity in patients with R/R aNHL

Response rates across all dosing levels in evaluable patients with R/R aNHL

n (%)	n	BOR	CR
R/R aNHL			
3L+	70	46 (65.7)	37 (52.8)
2L+	83	56 (67.0)	47 (57.0)
R/R aNHL with prior CAR-T	42	26 (61.9)	<mark>20 (47.6)</mark>
R/R aNHL without prior CAR-T			
3L+	28	20 (71.4)	17 (60.7)
2L+	41	30 (73.2)	27 (66.0)
2L	13	10 (77.0)	<mark>10 (77.0)</mark>